General Certificate of Education
January 2007
Advanced Level Examination

MATHEMATICS
MFP2
Unit Further Pure 2

Thursday 1 February 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Given that

$$
4 \cosh ^{2} x=7 \sinh x+1
$$

find the two possible values of $\sinh x$.
(4 marks)
(b) Hence obtain the two possible values of x, giving your answers in the form $\ln p$.
(3 marks)

2 (a) Sketch on one diagram:
(i) the locus of points satisfying $|z-4+2 \mathrm{i}|=2$;
(ii) the locus of points satisfying $|z|=|z-3-2 \mathrm{i}|$.
(3 marks)
(b) Shade on your sketch the region in which
both

$$
\begin{aligned}
& |z-4+2 \mathrm{i}| \leqslant 2 \\
& |z| \leqslant|z-3-2 \mathrm{i}|
\end{aligned}
$$

and

3 The cubic equation

$$
z^{3}+2(1-i) z^{2}+32(1+i)=0
$$

has roots α, β and γ.
(a) It is given that α is of the form $k i$, where k is real. By substituting $z=k i$ into the equation, show that $k=4$.
(b) Given that $\beta=-4$, find the value of γ.

4 (a) Given that $y=\operatorname{sech} t$, show that:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}=-\operatorname{sech} t \tanh t$;
(3 marks)
(ii) $\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\operatorname{sech}^{2} t-\operatorname{sech}^{4} t$.
(b) The diagram shows a sketch of part of the curve given parametrically by

$$
x=t-\tanh t \quad y=\operatorname{sech} t
$$

The curve meets the y-axis at the point K, and $P(x, y)$ is a general point on the curve. The arc length $K P$ is denoted by s. Show that:
(i) $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\tanh ^{2} t$;
(ii) $s=\ln \cosh t$;
(iii) $y=\mathrm{e}^{-s}$.
(c) The arc $K P$ is rotated through 2π radians about the x-axis. Show that the surface area generated is

$$
2 \pi\left(1-\mathrm{e}^{-s}\right)
$$

Turn over for the next question

5 (a) Prove by induction that, if n is a positive integer,

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \tag{5marks}
\end{equation*}
$$

(b) Find the value of $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}$.
(c) Show that

$$
(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=1+\cos \theta+i \sin \theta
$$

(d) Hence show that

$$
\begin{equation*}
\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0 \tag{4marks}
\end{equation*}
$$

6 (a) Find the three roots of $z^{3}=1$, giving the non-real roots in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leqslant \pi$.
(b) Given that ω is one of the non-real roots of $z^{3}=1$, show that

$$
\begin{equation*}
1+\omega+\omega^{2}=0 \tag{2marks}
\end{equation*}
$$

(c) By using the result in part (b), or otherwise, show that:
(i) $\frac{\omega}{\omega+1}=-\frac{1}{\omega}$;
(ii) $\frac{\omega^{2}}{\omega^{2}+1}=-\omega$;
(1 mark)
(iii) $\left(\frac{\omega}{\omega+1}\right)^{k}+\left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k}=(-1)^{k} 2 \cos \frac{2}{3} k \pi$, where k is an integer. (5 marks)

7 (a) Use the identity $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$ with $A=(r+1) x$ and $B=r x$ to show that

$$
\tan r x \tan (r+1) x=\frac{\tan (r+1) x}{\tan x}-\frac{\tan r x}{\tan x}-1
$$

(b) Use the method of differences to show that

$$
\tan \frac{\pi}{50} \tan \frac{2 \pi}{50}+\tan \frac{2 \pi}{50} \tan \frac{3 \pi}{50}+\ldots+\tan \frac{19 \pi}{50} \tan \frac{20 \pi}{50}=\frac{\tan \frac{2 \pi}{5}}{\tan \frac{\pi}{50}}-20
$$

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

